Although RANK-L is essential for osteoclast formation, factors such as transforming growth factor-beta (TGF-beta) are potent modulators of osteoclastogenic stimuli. To systematically investigate the role of TGF-beta in human osteoclastogenesis, monocytes were isolated from peripheral blood by three distinct approaches, resulting in either a lymphocyte-rich, a lymphocyte-poor, or a pure osteoclast precursor (CD14-positive) cell population. In each of these osteoclast precursor populations, the effect of TGF-beta on proliferation, TRAP activity, and bone resorption was investigated with respect to time and length of exposure. When using the highly pure CD14 osteoclast precursor cell population, the effect of TGF-beta was strongly dependent on the stage of osteoclast maturation. When monocytes were exposed to TGF-beta during the initial culture period (days 1-7), TRAP activity and bone resorption were increased by 40%, whereas the cell number was reduced by 25%. A similar decrease in cell number was observed when TGF-beta was present during the entire culture period (days 1-21), but in direct contrast, TRAP activity, cell fusion, cathepsin K, and matrix metalloproteinase (MMP)-9 expression as well as bone resorption were almost completely abrogated. Moreover, we found that latent TGF-beta was strongly activated by incubation with MMP-9 and suggest this to be a highly relevant mechanism for regulating osteoclast activity. To further investigate the molecular mechanism responsible for the divergent effects of continuous versus discontinuous exposure to TGF-beta, we examined RANK expression and p38 MAPK activation. We found the TGF-beta strongly induced p38 MAPK in monocytes, but not in mature osteoclasts, and that continuous exposure of TGF-beta to monocytes down-regulated RANK expression. The current results suggest that TGF-beta promotes human osteoclastogenesis in monocytes through stimulation of the p38 MAPK, whereas continuous exposure to TGF-beta abrogates osteoclastogenesis through down-regulation of RANK expression and therefore attenuation of RANK-RANK-L signaling.

Go to full publication


Please don't hesitate to contact us if you have any questions or other inquiries.

Are you interested in learning more about Nordic Bioscience?
Enter your information in the form and a representative will contact you shortly.

By submitting this form you agree to our terms and conditions.