Abstract

Infantile malignant osteopetrosis (IMO) is a rare, lethal, autosomal recessive disorder characterized by nonfunctional osteoclasts. More than 50% of the patients have mutations in the TCIRG1 gene, encoding for a subunit of the osteoclast proton pump. The aim of this study was to develop a clinically applicable lentiviral vector expressing TCIRG1 to correct osteoclast function in IMO. Two mammalian promoters were compared: elongation factor 1α short (EFS) promoter and chimeric myeloid promoter (ChimP). EFS promoter was chosen for continued experiments, as it performed better. IMO osteoclasts corrected in vitro by a TCIRG1-expressing lentiviral vector driven by EFS (EFS-T) restored Ca2+ release to 92% and the levels of the bone degradation product CTX-I to 95% in the media compared to control osteoclasts. IMO CD34+ cells from five patients transduced with EFS-T were transplanted into NSG mice. Bone marrow was harvested 9-19 weeks after transplantation, and human CD34+ cells were selected, expanded, and seeded on bone slices. Vector-corrected IMO osteoclasts had completely restored Ca2+ release. CTX-I levels in the media were 33% compared to normal osteoclasts. Thus, in summary, evidence is provided that transduction of IMO CD34+ cells with the clinically applicable EFS-T vector leads to full rescue of osteoclasts in vitro and partial rescue of osteoclasts generated from NSG mice engrafting hematopoietic cells. This supports the continued clinical development of gene therapy for IMO.

Go to full publication

Categories

Please don't hesitate to contact us if you have any questions or other inquiries.

Are you interested in learning more about Nordic Bioscience?
Enter your information in the form and a representative will contact you shortly.

By submitting this form you agree to our terms and conditions.

We use cookies on our site to enable essential services and functionalities, and collect data in regards to visitor information to provide the best possible experience. By using our website, you agree to our Privacy Policy and our cookies usage. Cookie Policy Privacy Statement