Abstract

PURPOSE OF REVIEW: This review focuses on the molecular taxonomy of osteoarthritis from the perspective of molecular biomarkers. We discuss how wet biochemical markers may be used to understand disease pathogenesis and progression and define molecular endotypes of osteoarthritis and how these correspond to clinical phenotypes.

RECENT FINDINGS: Emerging evidence suggests that osteoarthritis is a heterogeneous and multifaceted disease with multiple causes, molecular endotypes and corresponding clinical phenotypes. Biomarkers may be employed as tools for patient stratification in clinical trials, enhanced disease management in the primary care centres of the future and for directing more rational and targeted osteoarthritis drug development. Proximal molecular biomarkers (e.g synovial fluid) are more likely to distinguish between molecular endotypes because there is less interference from systemic sources of biomarker noise, including comorbidities.

SUMMARY: In this review, we have focused on the molecular biomarkers of four distinct osteoarthritis subtypes including inflammatory, subchondral bone remodelling, metabolic syndrome and senescent age-related endotypes, which have corresponding phenotypes. Progress in the field of osteoarthritis endotype and phenotype research requires a better understanding of molecular biomarkers that may be used in conjunction with imaging, pain and functional assessments for the design of more effective, stratified and individualized osteoarthritis treatments.

Go to full publication

Categories

Please don't hesitate to contact us if you have any questions or other inquiries.

Are you interested in learning more about Nordic Bioscience?
Enter your information in the form and a representative will contact you shortly.

By submitting this form you agree to our terms and conditions.

We use cookies on our site to enable essential services and functionalities, and collect data in regards to visitor information to provide the best possible experience. By using our website, you agree to our Privacy Policy and our cookies usage. Cookie Policy Privacy Statement