Abstract

INTRODUCTION: At present, no disease-modifying osteoarthritis drugs (DMOADS) are approved by the FDA (US Food and Drug Administration); possibly partly due to inadequate trial design since efficacy demonstration requires disease progression in the placebo group. We investigated whether combinations of biochemical and magnetic resonance imaging (MRI)-based markers provided effective diagnostic and prognostic tools for identifying subjects with high risk of progression. Specifically, we investigated aggregate cartilage longevity markers combining markers of breakdown, quantity, and quality.

METHODS: The study included healthy individuals and subjects with radiographic osteoarthritis. In total, 159 subjects (48% female, age 56.0 +/- 15.9 years, body mass index 26.1 +/- 4.2 kg/m2) were recruited. At baseline and after 21 months, biochemical (urinary collagen type II C-telopeptide fragment, CTX-II) and MRI-based markers were quantified. MRI markers included cartilage volume, thickness, area, roughness, homogeneity, and curvature in the medial tibio-femoral compartment. Joint space width was measured from radiographs and at 21 months to assess progression of joint damage.

RESULTS: Cartilage roughness had the highest diagnostic accuracy quantified as the area under the receiver-operator characteristics curve (AUC) of 0.80 (95% confidence interval: 0.69 to 0.91) among the individual markers (higher than all others, P \u003c 0.05) to distinguish subjects with radiographic osteoarthritis from healthy controls. Diagnostically, cartilage longevity scored AUC 0.84 (0.77 to 0.92, higher than roughness:

CONCLUSIONS: Combination of biochemical and MRI-based biomarkers improved diagnosis and prognosis of knee osteoarthritis and may be useful to select high-risk patients for inclusion in DMOAD clinical trials.

Go to full publication

Categories

Please don't hesitate to contact us if you have any questions or other inquiries.

Are you interested in learning more about Nordic Bioscience?
Enter your information in the form and a representative will contact you shortly.

By submitting this form you agree to our terms and conditions.