Abstract

Background: Chronic obstructive pulmonary disease (COPD) is characterized by abnormal epithelial repair resulting in a hypercoagulable state with intra-alveolar accumulation of fibrin and alveolar basement membrane destruction. This study aimed to investigate if the combination of two serological biomarkers evaluating these pathological processes could improve the prediction of mortality risk compared to single biomarkers.

Methods: Matrix metalloproteinase-mediated degradation of the type IV collagen α3 chain (C4Ma3), located in the alveolar basement membrane, and plasmin-mediated degradation of crosslinked fibrin (X-FIB), an end-product of fibrinogen, were assessed serologically in a subset of the ECLIPSE cohort (n = 982). Biomarker data were dichotomized into high versus low at the median. Cox regression and Kaplan-Meier curves were used to analyze the predictive value of having one or two high biomarkers for all-cause mortality over two years.

Results: COPD participants with high levels of two biomarkers were at significantly higher risk of all-cause mortality with a hazard ratio of 7.66 (95% CI 1.75-33.48;

Conclusions: A combination of serological biomarkers of alveolar basement membrane destruction and clot resolution was predictive of all-cause mortality in COPD. The combination of two different pathological aspects may strengthen prognostic accuracy and could be used in conjunction with clinical assessment to guide treatment decisions.

Categories

Please don't hesitate to contact us if you have any questions or other inquiries.

Are you interested in learning more about Nordic Bioscience?
Enter your information in the form and a representative will contact you shortly.

By submitting this form you agree to our terms and conditions.

We use cookies on our site to enable essential services and functionalities, and collect data in regards to visitor information to provide the best possible experience. By using our website, you agree to our Privacy Policy and our cookies usage. Cookie Policy Privacy Statement