Abstract

Background and aims: During fibrogenesis, in which excessive remodeling of the extracellular matrix occurs, both the quantity of type VI collagen and levels of matrix metalloproteinases, including MMP-2 and MMP-9, increase significantly. Proteolytic degradation of type VI collagen into small fragments, so-called neo-epitopes, may be specific biochemical marker of liver fibrosis. The aim of this study was to develop an ELISA detecting a fragment of type VI collagen generated by MMP-2 and MMP-9, and evaluate this assay in two preclinical models of liver fibrosis.

Methods: Mass spectrometric analysis of cleaved type VI collagen revealed a large number of protease-generated neo-epitopes. A fragment unique to type VI collagen generated by MMP-2 and MMP-9 was selected for ELISA development. The CO6-MMP assay was evaluated in two rat models of liver fibrosis: bile duct ligation (BDL) and carbon tetrachloride (CCl4)-treated rats.

Results: Intra- and inter-assay variation was 4.1% and 10.1% respectively. CO6-MMP levels were significantly elevated in CCl(4)-treated rats compared to vehicle-treated rats at weeks 12 (mean 30.9 ng/mL vs. 12.8 ng/mL,

Conclusions: This novel ELISA is the first assay enabling assessment of MMP degraded type VI collagen, allowing quantification of type VI collagen degradation, which would be relevant for different pathologies. The marker was highly associated with liver fibrosis in two liver fibrosis animal models, suggesting type VI turnover to be a central player in fibrogenesis.

Go to full publication

Categories

Please don't hesitate to contact us if you have any questions or other inquiries.

Are you interested in learning more about Nordic Bioscience?
Enter your information in the form and a representative will contact you shortly.

By submitting this form you agree to our terms and conditions.

We use cookies on our site to enable essential services and functionalities, and collect data in regards to visitor information to provide the best possible experience. By using our website, you agree to our Privacy Policy and our cookies usage. Cookie Policy Privacy Statement