Author

Journal

Abstract Objective: Dual amylin and calcitonin receptor agonists (DACRAs) are novel therapeutic agents that not only improve insulin sensitivity but also work as an adjunct to established T2DM therapies. DACRAs are currently administered once daily, though it is unknown whether DACRAs with increa...

Read the publication

Dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for treatment of type 2 diabetes and obesity because of their beneficial effects on body weight, blood glucose, insulin sensitivity, and food preference, at least short-term. DACRAs activate the receptors for a prolonged time...

Read the publication

Amylin treatment improves body weight and glucose control, although it is limited by a short action and need for high doses. Dual amylin and calcitonin receptor agonists (DACRAs) are dual amylin and calcitonin receptor agonists with beneficial effects beyond those of amylin. However, to what extent ...

Read the publication

Pharmacological treatment with dual amylin and calcitonin receptor agonists (DACRAs) cause significant weight loss and improvement of glucose homeostasis. In this study, the maximally efficacious dose of the novel DACRA, KeyBiosciencePeptide (KBP)-066, was investigated. Two different rat models were...

Read the publication

KBP-088 (KeyBiosciencePeptide 088) is a potent dual amylin and calcitonin receptor agonist (DACRA). DACRAs are known to elicit potent activity in terms of typical amylin-induced responses, such as reducing food intake and body weight. However, to what extent amylin infusion can mimic the effects of ...

Read the publication

OBJECTIVES: Pain and disability are the main clinical manifestations of osteoarthritis, for which only symptomatic therapies are available. Hence, there is a need for therapies that can simultaneously alter disease progression and provide pain relief. KBP is a dual amylin- and calcitonin-receptor ag...

Read the publication

BACKGROUND: Pain is a debilitating symptom of rheumatoid arthritis (RA), caused by joint inflammation and cartilage and bone destruction. Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat pain and inflammation in RA, but are not disease-modifying and do not prevent joint destruction wh...

Read the publication

KBP-042 is a dual amylin and calcitonin receptor agonist that increases glucose tolerance and insulin action and reduces body weight in rat models of obesity and prediabetes. The objective of the present study was to 1) evaluate KBP-042 as a treatment of late-stage type 2 diabetes in a rat model and...

Read the publication

Amylin and GLP-1 agonism induce a well-known anorexic effect at dose initiation, which is managed by dose escalation. In this study we investigated how to optimize tolerability while maintaining efficacy of a novel, highly potent dual amylin and calcitonin receptor agonist (DACRA), KBP-089. Furtherm...

Read the publication

Amylin and GLP-1 agonism induce a well-known anorexic effect at dose initiation, which is managed by dose escalation. In this study we investigated how to optimize tolerability while maintaining efficacy of a novel, highly potent dual amylin and calcitonin receptor agonist (DACRA), KBP-089. Furtherm...

Read the publication

OBJECTIVE: In this study, KBP-042, a dual amylin- and calcitonin-receptor agonist, was investigated as a treatment of obesity and insulin resistance in five different doses (0.625 µg/kg-10 µg/kg) compared with saline-treated and pair-fed controls. METHODS: Rats with obesity received daily s.c. admi...

Read the publication

This study aims to elucidate the mechanism behind the potent weight loss induced by dual amylin and calcitonin receptor agonists (DACRA) through comparison of the novel DACRA KBP-088 with the amylinomimetic davalintide with regard to in vitro receptor pharmacology and in vivo efficacy on food intake...

Read the publication

KBP-042 is a synthetic peptide dual amylin- and calcitonin-receptor agonist (DACRA) developed to treat type 2 diabetes by inducing a significant weight loss while improving glucose homeostasis. In this study the aim was to compare two different formulations: An oral formulation (1mg/kg) to subcutane...

Read the publication

We previously reported that oral delivery of salmon calcitonin (sCT) improved energy and glucose homeostasis and attenuated diabetic progression in animal models of diet-induced obesity (DIO) and type 2 diabetes, although the glucoregulatory mode of action was not fully elucidated. In the present st...

Read the publication

The present study investigated a novel oral dual amylin and calcitonin receptor agonist (DACRA), KBP-042, in head-to-head comparison with salmon calcitonin (sCT) with regard to in vitro receptor pharmacology, ex vivo pancreatic islet studies, and in vivo proof of concept studies in diet-induced obes...

Read the publication

Salmon calcitonin (sCT) and human calcitonin (hCT) are pharmacologically distinct. However, the reason for the differences is unclear. Here we analyze the differences between sCT and hCT on the human calcitonin receptor (CT(a)R) with respect to activation of cAMP signaling, β-arrestin recruitment, l...

Read the publication

Disease heterogeneity is as major issue in Type II Diabetes Mellitus (T2DM), and this patient inter-variability might not be sufficiently reflected by measurements of glycated haemoglobin (HbA1c).Β-cell dysfunction and β-cell death are initiating factors in development of T2DM. In fact, β-cells are ...

Read the publication

Introduction: Glucocorticoids are known to attenuate bone formation in vivo leading to decreased bone volume and increased risk of fractures, whereas effects on the joint tissue are less characterized. However, glucocorticoids appear to have a reducing effect on inflammation and pain in osteoarthrit...

Read the publication

Please don't hesitate to contact us if you have any questions or other inquiries.

Are you interested in learning more about Nordic Bioscience?
Enter your information in the form and a representative will contact you shortly.

By submitting this form you agree to our terms and conditions.