INTRODUCTION: The medical need in the haemophilic (HF) field to reduce bleeding incidents requires measurement of the annual bleeding rate (ABR) in haemophiliacs. Vascular rupture is associated with damage to the vascular endothelium causing exposure of the basement membrane. Endothelial cells and matrix impairment may be associated with joint bleeds and later development of HF arthropathy. Imbalanced extracellular matrix turnover is a central pathological feature in many diseases consequent to epithelial or endothelial cell damage. Type XVIII collagen is an essential basement membrane component, with an endothelial specific isoform.

AIM: To quantify the basement membrane specifically for the endothelial cells, as that may have particular relevance to endothelial cell stability and rupture in haemophiliacs. A newly developed ELISA assay detecting endothelial type XVIII collagen (COL-18N) was used to assess the clinical relevance of endothelial basement membrane turnover in patients diagnosed with HF arthropathy and correlation to ABR.

METHODS: We developed an ELISA assay for quantification of COL-18N. Serum from 35 male HF patients was investigated using the COL-18N ELISA.

RESULTS: COL-18N correlated to the ABR of haemophiliacs,\u003c0.006.

CONCLUSION: Vascular rupture and consequent bleeding are associated with joint damage and deterioration of life quality in haemophiliacs. Quantification of ABR is an important part in efficacy assessment of different interventions, and the benchmark of these. Objective biomarkers reflecting endothelial dysfunction, vascular leaks and rupture, like the COL-18N biomarker that associate with ABR, may assist in identifying the most optimal treatment and monitoring of HF patients.

Go to full publication


Please don't hesitate to contact us if you have any questions or other inquiries.

Are you interested in learning more about Nordic Bioscience?
Enter your information in the form and a representative will contact you shortly.

By submitting this form you agree to our terms and conditions.