Abstract

Organ fibrosis is characterized by a chronic wound-healing response, with excess deposition of extracellular matrix components. Here, collagen type I represents the most abundant scar component and a primary target for antifibrotic therapies. Liver fibrosis can progress to cirrhosis and primary liver cancer, which are the major causes of liver related morbidity and mortality. However, a (pro-)collagen type I specific therapy remains difficult and its therapeutic abrogation may incur unwanted side effects. We therefore designed tetracycline-regulated procollagen alpha1(I) short hairpin (sh)RNA expressing mice that permit a highly efficient inducible knockdown of the procollagen alpha1(I) gene in activated (myo-)fibroblasts, to study the effect of induced procollagen type I deficiency. Transgenic mice were generated using recombinase-mediated integration in embryonic stem cells or zinc-finger nuclease-aided genomic targeting combined with miR30-shRNA technology. Liver fibrosis was induced in transgenic mice by carbon tetrachloride, either without or with doxycycline supplementation. Doxycycline treated mice showed an 80-90% suppression of procollagen alpha1(I) transcription and a 40-50% reduction in hepatic collagen accumulation. Procollagen alpha1(I) knockdown also downregulated procollagens type III, IV and VI and other fibrosis related parameters. Moreover, this was associated with an attenuation of chronic inflammation, suggesting that collagen type I serves not only as major scar component, but also as modulator of other collagens and promoter of chronic inflammation.

Go to full publication

Categories

Please don't hesitate to contact us if you have any questions or other inquiries.

Are you interested in learning more about Nordic Bioscience?
Enter your information in the form and a representative will contact you shortly.

By submitting this form you agree to our terms and conditions.