Abstract

Some osteopetrotic mutations lead to low resorption, increased numbers of osteoclasts, and increased bone formation, whereas other osteopetrotic mutations lead to low resorption, low numbers of osteoclasts, and decreased bone formation. Elaborating on these findings, we discuss the possibility that osteoclasts are the source of anabolic signals for osteoblasts. In normal healthy individuals, bone formation is coupled to bone resorption in a tight equilibrium. When this delicate balance is disturbed, the net result is pathological situations, such as osteopetrosis or osteoporosis. Human osteopetrosis, caused by mutations in proteins involved in the acidification of the resorption lacuna (ClC-7 or the a3-V-ATPase), is characterized by decreased resorption in face of normal or even increased bone formation. Mouse mutations leading to ablation of osteoclasts (e.g., loss of macrophage-colony stimulating factor [M-CSF] or c-fos) lead to secondary negative effects on bone formation, in contrast to mutations where bone resorption is abrogated with sustained osteoclast numbers, such as the c-src mice. These data indicate a central role for osteoclasts, and not necessarily their resorptive activity, in the control of bone formation. In this review, we consider the balance between bone resorption and bone formation, reviewing novel data that have shown that this principle is more complex than originally thought. We highlight the distinct possibility that osteoclast function can be divided into two more or less separate functions, namely bone resorption and stimulation of bone formation. Finally, we describe the likely possibility that bone resorption can be attenuated pharmacologically without the undesirable reduction in bone formation.

Go to full publication

Categories

Please don't hesitate to contact us if you have any questions or other inquiries.

Are you interested in learning more about Nordic Bioscience?
Enter your information in the form and a representative will contact you shortly.

By submitting this form you agree to our terms and conditions.

We use cookies on our site to enable essential services and functionalities, and collect data in regards to visitor information to provide the best possible experience. By using our website, you agree to our Privacy Policy and our cookies usage. Cookie Policy Privacy Statement