OBJECTIVE:
The specific degradation of type II collagen and aggrecan by matrix metalloproteinase (MMP)-9, -13 and ADAMTS-4 and -5 (aggrecanase-1 and -2) in the cartilage matrix is a critical step in pathology of osteoarthritis (OA). The aims of this study were: i) To investigate the relative contribution of ADAMTS-4 and ADAMTS-5 to cartilage degradation upon catabolic stimulation; ii) To investigate the effect of regulating the activities of key enzymes by mean of broad-spectrum inhibitors.

METHODS:
Bovine full-depth cartilage explants stimulated with tumor necrosis factor alpha (TNF-α) and Oncostatin M (OSM) were cultured for 21 days with or without a number of inhibitors targeting different types of proteases. Monoclonal antibodies were raised against the active sites of ADAMTS-4, -5, MMP-9 and -13, and 4 ELISAs were developed and technically validated. In addition, the established AGNxI (ADAMTS-degraded aggrecan), AGNxII (MMP-degraded aggrecan), and CTX-II (MMP-derived type II collagen) were quantified in the explants-conditioned media.

RESULTS:
We found that: i) Active ADAMTS-4, MMP-9, -13 were released in the late stage of TNF-α/ OSM stimulation, whereas no significant active ADAMTS-5 was detected in either extracts or supernatants; ii) Active ADAMTS-4 was primarily responsible for E373-374A bond cleavage in aggrecan in this setting; and iii) The compensatory mechanism could be triggered following the blockage of the enzyme caused by inhibitors.

CONCLUSIONS:
ADAMTS-4 appeared to be the major protease for the generation of 374ARGS aggrecan fragment in the TNF-α/OSM stimulated bovine cartilage explants. This study addresses the need to determine the roles of ADAMTS-4 and ADAMTS-5 in human articular degradation in OA and hence identify the attractive target for slowing down human cartilage breakdown.